

Probability Vocabulary and Definitions

Outcome: Any possible or actual result of the action considered, such as rolling a 5 on a standard number cube or getting tails when flipping a coin.

Event: A desired (or successful) outcome or group of outcomes from an experiment, such as rolling an even number on a standard number cube.

Sample space: All possible outcomes of a situation. For example, the sample space for flipping a coin is heads and tails; rolling a standard number cube has six possible outcomes ($1,2,3,4,5$, and 6).

Probability: The likelihood that an event will occur. Probabilities may be written as fractions, decimals, or percents. An event that is guaranteed to happen has a probability of 1 , or 100%. An event that has no chance of happening has a probability of 0 , or 0%. Events that "might happen" have probabilities between 0 and 1 or between 0% and 100%. In general, the more likely an event is to happen, the greater its probability.

Experimental probability: The probability based on data collected in experiments.

$$
\text { Experimental probability }=\frac{\text { number of successful outcomes in the experiment }}{\text { total number of outcomes in the experiment }}
$$

Theoretical probability is a calculated probability based on the possible outcomes when they all have the same chance of occurring.

$$
\text { Theoretical probability }=\frac{\text { number of successful outcomes (events) }}{\text { total number of possible outcomes }}
$$

In the context of probability, "successful" usually means a desired or specified outcome (event), such as rolling a 2 on a number cube (probability of $\frac{1}{6}$). To calculate the probability of rolling a 2 , first figure out how many possible outcomes there are. Since there are six faces on the number cube, the number of possible outcomes is 6 . Of the six faces, only one of the faces has a 2 on it. Thus, to find the probability of rolling a 2 , you would write:
$\mathrm{P}(2)=\frac{\text { number of ways to roll } 2}{\text { number of possible outcomes }}=\frac{1}{6}$ or $0.1 \overline{6}$ or approximately 16.7%

