Math Concepts Problem Set	5 Name	e		
Assigned Friday 10/4, due Frid	day 10/11			
No Work Shown, No Credit	Given Perio	Period		
Problems #1-#4 can be comp attached on <i>a separate piece</i>	oleted on this paper. of paper.	. The work for prol	blems #5-#14 needs to be	
1. Use your knowledge of plac pair of numbers.	ce value to place the	correct inequality sig	gn (< or >) between each	
a) 5.207 5.27	b) 3.006 3.06	c) 2.408	2.40	

2. a) Round each number to the nearest tenth: 2.563 112.926 48.057

b) Round each number to the nearest hundredth: 2.563 112.926 48.057

3. Write the next four numbers in the pa	attern. Describe the pattern in words.
a) 8, 12, 16, 20,,,,,	b) 5, 12, 19, 26,,,,,
Pattern:	Pattern:
c) 14, 11, 8, 5,,,,,	d) 32, 16, 8, 4,,,,,,
Pattern:	Pattern:

4. Figure out the Secret Number! Fill in the blanks based on the clues.

The digit in the tens place is the number of sides on a pentagon. The digit in the thousandths place is a prime number between five and ten. The digit in the hundredths place is the number of legs on a spider. The digit in the hundreds place is the number of legs on a dog. The digit in the tenths place is the number of stars in our solar system. The digit in the ones place is the product: 23 x 68 x 0.

- **7. a)** Draw the 4^{th} , 5^{th} , and 6^{th} figures of this pattern.
 - **b**) How is the pattern growing?
 - c) How many dots will be in the 10^{th} figure?

d) How many dots will be in the 100th figure? How do you know?

- 8. How many pennies are represented by each expression below? a) 3 + 4(5) b) 7 + 4(3) c) 2(3) + 5 + 4(2)
- **9.** a) Draw every possible rectangular array of 30 pennies. Label each of your arrays with its dimensions.
 - **b**) List all of the factors of 30.

10. Lena's mother asked her to count the number of pennies in the penny jar. Her mother said, "*I made seven stacks of six pennies each, and there were four leftover pennies.*" When Lena counted, she made nine stacks of five pennies each and had two left.

- a) Write a numerical expression to represent Lena's way of counting.
- **b**) Write a numerical expression to represent her mother's way.
- c) Lena thinks her mother must have been working with fewer pennies than she was. Is Lena correct? Show how you know.
- **d**) Use a < , > , or = symbol to show how the two expressions compare.

- **d**) Sketch at least one way to rearrange the tiles in part (a) so that the shape has a larger perimeter.
- **12.** What number is being described in each of these puzzles?
 - **a**) When I multiply my number by 12 I get 60.
 - **b**) When I divide my number by 14 I get 4.
 - c) When I subtract 19 from my number I get 22
 - d) When I add 24 to my number I get 20.

13. I'm thinking of a number. When I divide it by three and subtract 7, I get zero. What's my number? How do you know?

14. Fill in each blank with either < , > , or = . Justify each answer with a diagram or expression.

a) Six sets of (7-4) _____ Three sets of (2+4)

b) Three sets of (5-1) _____ Four sets of (1+1)

c) Five sets of (6-3) _____ One set of (9+8)